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Technical University Munich
& Charles University (Prague)

Munich, Germany
lukas.veskrna@gmail.com

Abstract—This paper examines parallel-in-time integration,
specifically the parareal algorithm, for particle simulations by
developing a simple parallel-in-time simulator for solar system
dynamics. We present experimental measurements of the sim-
ulation run times, which we then compare with expectations
derived from theory. Additionally, we explore the behavior of
the algorithm with different parameter settings.

Index Terms—parareal, particle simulations, parallel-in-time,
solar system.

I. INTRODUCTION

Particle simulations are an important tool for understand-
ing many different kinds of particle-based systems, such as
molecular, fluid, plasma, solar system and stellar dynamics.

Simulating those systems usually requires a huge amount
of computations, which can take a very long time. Some of
these computations can be run in parallel in order to reduce the
computation time. There has been a lot of focus in parallelizing
these simulations through the spatial domain, which allows us
to run bigger simulations while taking the same time.

There do, however, also exist algorithms that allow us to
parallelize simulations in the time domain. This could be very
useful for running smaller simulations through a very long
timespan or with a very small step size.

In this article, we will focus on the fitting example of solar
system dynamics, although many applications could be found
also in other fields, such as molecular dynamics. [7]

To study the behavior of mostly stable planetary orbits, long
simulations are required. Thus, parallel-in-time algorithms
provide a promising approach. [2]

In particle simulations, we are often under the hood numer-
ically solving an ODE in the form:

du(t)

dt
= f(t, u(t))

where f is the function describing our problem, u(t) is the
state of the system at time t and we are given an initial
condition u(t0) = u0 (this type of problem is often called
an initial value problem).

We typically solve this problem using a numerical method,
that does a step in time of size ∆t and estimates u(t0 +∆t).
We then use this result to advance the computation further in
time by taking more such steps.1

1One such method is the explicit Euler method, which simply approximates
u at time t+∆t by taking a step in the direction given by the value of f at
the current state u at time t, so u(t+∆t) ≈ u(t) + ∆tf(t, u(t)). [10]

Thus, the integration is the part of the computation which
usually is dependent on some previous time step and thus
can’t be easily parallelized. In order to make it parallelizable,
multiple techniques were devised, one of them being the
parareal algorithm.

II. THE PARAREAL ALGORITHM

The parareal algorithm was introduced by Lions, Maday and
Turinici in 2001. [1]2 It achieves parallel-in-time integration
using two types of integrators. A coarse solver C is used first
to roughly estimate the solution3, while a fine (but potentially
expensive) solver F is then used to further refine this estimated
trajectory.

Suppose we integrate from time t0 to T , we split this
interval into N segments of size ∆t = T−t0

N . We denote
u0, u1 . . . uN the states of the system in times t0, t1 . . . tN
with tn = t0 + n∆t (so t0 = t0 and tN = T ).4

The algorithm works in iterations. The 0th iteration is used
to initialize the algorithm, while the subsequent iterations
improve the result of the previous iteration. We use the
notation ui

n to represent un for iteration i.
In the 0th iteration, we use the coarse solver to compute

u1 . . . uN sequentially. For every 0 ≤ n < N we do

u0
n+1 = C(tn, tn +∆t, u0

n)

with u0
0 = u0, which is the initial state of the system.

In every subsequent iteration i + 1, we first calculate the
results of the fine but expensive solver, F(tn, tn + ∆t, ui

n),
for every 0 ≤ n < N in parallel.

Then, we adjust the estimated states from the previous
iteration with the following correction:

ui+1
n+1 = C(tn, tn +∆t, ui+1

n )

+ F(tn, tn +∆t, ui
n)

− C(tn, tn +∆t, ui
n) (1)

This is repeated until satisfactory convergence. It has been
proven for example by Gander et al. [4] that for i → ∞, we
will converge to u0...N such that un+1 = F(tn, tn +∆t, un),

2The original paper is in French but it does include a basic description in
English.

3In the literature, the coarse solver is often denoted G. However, I find it
more intuitive to use C as in the word coarse.

4The solvers can also use their own smaller subdivisions (e.g. different step
sizes) but the parareal algorithm does not interact with those subdivisions.



which is equivalent to computing the states at times t0...N with
the fine solver sequentially.

In the work by Gander et al. [4], the method has been
formulated using different generalized frameworks. They also
extend the time interval partitioning to arbitrary partitions, not
only equally sized ones as in the original paper. [1]
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Figure 1. Parareal convergence for the example of a harmonic oscillator with
k = 1 N

m . The coarse solver is explicit Euler and the fine solver is RK4.

Stopping criteria

We assume the algorithm has converged enough when
∀n : ∥ui+1

n − ui
n∥ < ε. Other criteria also exist. [3]

Theoretical speed-up

A derivation of the theoretical speedup is presented in
Pentland et al. [3] (Section 2.3), which we use here. It
calculates the speed-up when running even the coarse solver
partially in parallel, we simplify it by running C serially (our
implementation doesn’t include this optimization).

To find the theoretical speed-up of the algorithm, we com-
pute the time required by the parareal algorithm, Tparareal, and
the time Tserial taken to compute the solution by running the
fine integrator serially.

If we assume running F over any segment [tn, tn+1] takes
TF and running C over any segment takes TC , then computing
F serially takes

Tserial ≈ NTF

while using the parareal algorithm, with N CPUs, we have

Tparareal ≈ NTC +

k∑
i=1

(TF +NTC) = kTF + (k + 1)NTC

where k is the number of iterations required for convergence.
Finally, the speed-up Sparareal can be computed as

Sparareal =
Tserial

Tparareal
=

NTF

kTF + (k + 1)NTC
=(

k

N
+ (k + 1)

TC

TF

)−1

(2)

Thus, to reach a high speed-up, we want the ratio TC
TF

to be
small while also keeping the number of required iterations k
small. [3]

The algorithm always converges in at most N iterations,
because the exact initial condition propagates through all the
N segments, however, that is not useful (and takes even more
time), because the algorithm has to converge at a significantly
smaller number of iterations to gain any real speed-up. [3]
(2.3)

III. APPLICATION TO PARTICLE SIMULATIONS

The purpose of this paper is to examine the potential in the
use of the parareal method for long running simulations such
as simulations of the solar system.

A. The particle simulation

We use a simple n-body particle simulation of the solar
system with time complexity O(n2), which we then integrate
using the parareal method. This is inefficient for a large
number of particles, however, our focus is on the parallel-
in-time integration, not the optimizations required for a large
number of particles, therefore we use a simpler simulation.

Thus, we are integrating the following equation:

du(t)

dt
= f(t, u(t)) = f(t, (x(t), v(t))) = (v(t), a(t))

where
ai(t) = −G

∑
j

mj
xi(t)− xj(t)

∥xi(t)− xj(t)∥32

where mj is the mass of the j-th particle. Acceleration is
derived solely from Newton’s law of universal gravitation.

It is also possible to use a similar algorithm to the parareal
algorithm using a simplified model instead of the coarse solver.
This was done prior to the invention of parareal by Saha et al.
[2], also in a solar system simulation, who obtained the coarse
approximation by simulating only the interactions of the Sun
and other planets. [2] [5]

B. Choice of the coarse and fine integrators

• We use the Velocity Verlet method as the coarse integrator
for its favourable stability properties with a small cost
and the classic fourth-order Runge-Kutta method (RK4)
as the fine integrator for its precision. [8]

• Two symplectic methods could be used5, however, due
to the nature of the parareal algorithm, the resulting
parareal integration would not necessarily be symplectic.
A modified parareal algorithm that preserves the sym-
plectic property, shown in [6], also exists, however it is
beyond the scope of this paper.

• An adaptive step size fine integrator with error control
would be an option, such as the Dormand-Prince RK45
method. However, since the method can have very differ-
ent execution times (depending on the step size required
to reach the desired accuracy), which could potentially

5A symplectic integrator preserves physically meaningful behavior of a
Hamiltonian system in the long term. [8]



be an issue when parallelizing the code, RK4 was used
for simplicity.

For completeness, the two selected integration methods are
briefly described in the next paragraphs.

1) Velocity Verlet:

x(t+∆t) ≈ x(t) + v(t)∆t+
1

2
a(t)∆t2

v(t+∆t) ≈ v(t) +
a(t) + a(t+∆t)

2
∆t

Here x(t), v(t) and a(t) are approximations of the correspond-
ing values (position, velocity, acceleration) by the method at
time t, ∆t is the time step size. Note that only one evaluation
of a per step suffices, because we can keep a(t) from the last
step. [9]

2) The classic fourth-order Runge-Kutta method (RK4):

k1 = f(t, u(t))

k2 = f(t+
∆t

2
, u(t) + ∆t

k1
2
)

k3 = f(t+
∆t

2
, u(t) + ∆t

k2
2
)

k4 = f(t+∆t, u(t) + ∆tk3)

u(t+∆t) ≈ u(t) +
∆t

6
(k1 + 2k2 + 2k3 + k4)

where u(t) is the approximation of the state by the method
at time t. ∆t denotes the time step size. The method requires
four acceleration computations per step. [10]

C. The initial conditions

The initial conditions for the simulation were generated with
a python script using the astropy package. [13]
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Figure 2. A more complex example to illustrate the behavior of the parareal
algorithm: Path of Mercury over the time of one Earth year in a parareal
integrated simulation converging over multiple iterations of the parareal
algorithm. Velocity Verlet and RK4 are used with the same step size of
0.5 day.

IV. IMPLEMENTATION AND EXPERIMENTS

A. Implementation

An implementation in C++ using OpenMP for the par-
allelization was written.6 In case we would want to use a

6The code is available at https://github.com/lesves/mol-dyn.

substantially higher number of CPUs, we would have to use a
different framework, such as MPI. However, due to the higher
complexity of such implementation, a simpler approach with
OpenMP was used in this project instead.

B. Experiments: The environment

All experiments were run on a cluster in order to get a more
reproducible and comparable environment.

The experimental runs were conducted on the zia.cerit-sc.cz
cluster owned by CERIT-SC/MU, a part of the MetaCentrum
organization. Each computer in the cluster is equiped with two
AMD EPYC 7662 (2x 64 Core) 3.31 GHz processors.

C. Experiment I: Measured run time and expected run time
comparison

Multiple experiments with the same initial conditions and
the same step size were conducted. A very small step size
was used, so all of the runs would converge within the same
number of iterations (one iteration7). For comparison, also a
serial version (not using the parareal algorithm) was run with
the same initial conditions and step size.

The resulting run times were collected in Table I. For
visualizations of the simulation results see Figures 3 and 4.
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Figure 3. Trajectory computed in the simulation of 104 days of the solar
system using parareal. For more information, see Table I.

Let’s derive the expected speed-ups and run times of our
program and compare them with the measured run times. To
simplify the calculation, we will only estimate it using the
number of function evaluations. For Velocity Verlet, we have
TC = 1NC , where NC is the number of steps of the coarse
integrator. RK4 takes four function evaluations, so we have
TF = 4NF . If the fine integrator does 10 times more steps
than the coarse one, we have NC

NF
= 1

10 . Thus, we have

Sparareal =

(
k

N
+ (k + 1)

1NC

4NF

)−1

=

(
k

N
+

k + 1

40

)−1

7This choice is explained in the next experiment (Experiment II), where
the observations suggest that convergence within one iteration possibly has
optimal run time.

https://github.com/lesves/mol-dyn
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Figure 4. Conservation of energy in the simulation. Same simulation as in
Figure 3. With a small enough step size, even a non-symplectic integrator like
RK4 can preserve energy for some number of time steps.

When we choose the number of processors (and the number
of segments), N = 16 and we converge within one iteration,
we have

Sparareal =

(
1

16
+

1

20

)−1

≈ 8.89

We can compare this with the real measured speed-up, see
Table I. We observe that in reality, the program runs around 5
times faster with 16 threads. We can also compare the expected
speed-up Sparareal for other numbers of CPUs, see Figure 5.

0 20 40 60 80
n CPUs

100

200

300

R
un

tim
e 

[s
]

Figure 5. Comparison of the expected run times (red curve, computed from
Sparareal and the run time of the serial algorithm (red “x” point)) and the real
measured times with different numbers of CPU cores (blue points). For more
information, see Table I.

While we lose some accuracy with the parareal method, this
is a parameter that can be controlled, for example using the
converge parameter (ε) and the coarse solver accuracy.

If we instead approximate the simulation using a similar
serial simulation with a lower number of steps, we get a
substantially bigger error than the parareal algorithm while
not improving the run time significantly. This is also shown
in Table I (as “serial (approx.)”).

D. Experiment II: Run times, numbers of iterations and coarse
solver steps

The second experiment shows how run times and the
numbers of iterations that the program takes to converge relate
to the number of steps of the coarse solver. This observation
can help with deciding what is the optimal number of steps
to use for the coarse solver. We are interested primarily in the
run time, however the number of iterations turns out to be a
very important factor in the run time.

A series of simulations with the same configuration but with
different numbers of steps of the coarse solver (NC) were run
and the results are shown in Figure 6. The parameter for the
stopping criterion was fixed at ε = 10−3 and we observe
varying numbers of iterations required to reach this criterion.

A key feature observed in Figure 6 are the “spikes” in the
run times, that occur when a change in the number of required
iterations changes. After every initial downward spike, there
is always an upward trend.

Presumably, this shows that the run time depends primarily
on the number of iterations and only secondarily on the num-
ber of steps of the coarse solver. The upward trends correspond
to improving the coarse solver while not improving the number
of iterations, which does not improve the computation time.

From this, we can conjecture, that (in the case of our
simulation) the optimal choice of the number of steps for the
coarse solver (in the sense of the smallest run time with a
fixed ε) is the smallest possible number such that parareal
converges within one iteration (or in terms of step sizes, the
optimal choice of the step size is the biggest possible such
that the algorithm converges in one iteration).
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Figure 6. Run time and number of iterations depending on the ratio of the
numbers of steps of the coarse and fine solvers. It corresponds to a simulation
of two years with final step size 2×365 day

800×16
≈ 0.057 day run on 16 cores (with

NF = 800, F is once again RK4 and C is Velocity Verlet). It was averaged
through 10 runs to reduce noise interfering with the small running times. The
ε for convergence was chosen as ε = 10−3.

V. SUMMARY AND DISCUSSION

A. Speed-up

The run times of a fixed simulation with different numbers
of CPU cores were measured in Experiment I and compared



Table I
Comparison of running times taken by different configurations of the simulator for a planetary simulation of 104 days. NC and NF refer to the number of

steps of the coarse and the fine integrators respectively (within one segment). The fine solver step numbers have been chosen specifically to preserve the
step size of 0.003125 days. This step size was selected, so all the parareal runs converge within one iteration (with ε = 10−3 AU). This number of

iterations was chosen for easier comparison between the runs and to achieve greater speed-up (see Experiment II). The programs were run on the machines
of the zia.cerit-sc.cz cluster owned by CERIT-SC/MU, a part of the MetaCentrum organization, each equipped with two AMD EPYC 7662 (2x 64 Core)

3.31 GHz processors.

Program n CPUs a NC NF ∆tF
b Abs. err. c Rel. err. d CPU time Real time

parareal 64 0.5× 104 0.5× 105 0.003125 day 0.0110 AU 3.60% 00:11:53 00:00:35
parareal 32 1× 104 1× 105 0.003125 day 0.0110 AU 3.60% 00:12:53 00:00:52
parareal 16 2× 104 2× 105 0.003125 day 0.0109 AU 3.60% 00:10:25 00:01:01
parareal 4 8× 104 8× 105 0.003125 day 0.0109 AU 3.57% 00:10:27 00:02:54

serial (base) 1 N/A 32× 105 0.003125 day 0 AU 0% 00:05:01 00:05:01
serial (approx.) e 1 N/A 0.9× 32× 105 0.003472 day 6.7580 AU 256.25% 00:04:38 00:04:38
a The number of segments (N ) is the same as the number of CPUs.
b The resulting step size (fine solver step size). For parareal, it can be calculated as T−t0

NNF
c Maximum difference from the base serial computation across the trajectory
d Maximum relative error across the trajectory compared to the base serial computation
e A serial approximation of the base serial simulation using a bigger step size.
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Figure 7. This bonus figure shows the numbers of iterations that the parareal
algorithm with N = 16 requires to converge for a simulation of 365 days
with the fine solver step size of T−t0

NNF
= 365 days

16×100
for different ratios of NC

NF
and different values of the convergence criterion parameter, ε.

with the theoretical expectations. As was visualized in Fig-
ure 5, we can observe that the measured run times show a
trend similar to the expected run times (corresponding to the
predicted speed-ups).

The implementation is consistently slower than the esti-
mated run times; however, many factors were not considered
in the speed-up estimation, for example, in the solvers we
only took into account the function evaluations. There are also
other factors such as the synchronization costs of the OpenMP
threads.

In conclusion, we were able to achieve noticeable speed-ups
consistent with the theoretical foundation by using the parareal
algorithm.

By comparing parareal with an approximating serial run
using a bigger step size (see ”serial (approx.)“ in Table I), we
have also shown that in this case, the parareal algorithm beats
simply approximating the solution using a smaller step size in
both accuracy and run time.

The error of the parareal algorithm can be controlled using
parameters like the threshold for the convergence criterion (ε)
and in some cases the coarse solver step size.

Finally, in Experiment II, we attempted to find the optimal
setting (with the smallest run time and a fixed ε) of the course
solver step size for our simulation. The results are presented in
Figure 6. The result is a prediction of the optimal coarse solver
step size for our simulation, which is the biggest possible such
that the algorithm converges in one iteration.

B. Spatial vs temporal parallelization

In some situations, it is not that clear as in our case whether
is it better to use spatial or temporal parallelization or both.
This is beyond the scope of this article, however, there has
been research in this area.

For example, Croce et al. presented a study using a simu-
lation of unsteady Navier-Stokes equations for incompressible
flow using parareal that is parallel both in time and space.
They measured the speed-up with different numbers of cores
assigned to the spatial and temporal parallelization and showed
that they can be combined to gain higher speed-up. [11]

C. Other particle simulations: Molecular dynamics

In molecular dynamics, there are potential applications for
parallel-in-time integration, such as material science. [7] Or
possibly simulating protein folding, which requires extremely
small step sizes (as small as femtoseconds) and great amounts
of computational power. [12]

We evaluated parareal only in the example of our solar
system. Those settings, however, have their own specifics, for
example, planets in our solar system follow orbits with very
different periods, which makes them harder to simulate in the
sense that if we simulate a single orbit of Neptune, we have
to simulate many orbits of Mercury (in a simulation of all
the planets), which requires very small step sizes to behave
correctly.



We could further improve our solar system simulations
by further specializing them as was done in the work by
Saha et al. [2] (a different coarse model simulating only the
interactions of the Sun and other planets was used instead of
a course integrator). However, this would be too specific for
solar system dynamics and wound not generalize well, so this
is beyond our scope.

These problems are usually not present in molecular dynam-
ics settings and thus we could expect a more stable behavior.
However, molecular dynamics present their own different
challenges. This could be an interesting area to continue with
this work.
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